The regulation of heme turnover and carbon monoxide biosynthesis in cultured primary rat olfactory receptor neurons.

نویسندگان

  • T Ingi
  • G Chiang
  • G V Ronnett
چکیده

Heme oxygenase (HO) converts heme to carbon monoxide (CO) and biliverdin, which is metabolized rapidly to bilirubin. CO is implicated as an intercellular messenger, whereas bilirubin could function as an antioxidant. These cellular functions differ significantly from those of HO in peripheral tissues, in which it degrades heme from senescent erythrocytes, suggesting that the regulation of HO may differ in neurons from that in other tissues. Among neurons, olfactory receptor neurons have the highest level of HO activity. Metabolic labeling with [2-14C]glycine or delta-[3H]aminolevulinic acid ([3H]ALA) was used to investigate heme metabolic turnover and CO biosynthesis in primary cultures of olfactory receptor neurons. The production rates of heme precursors and metabolites from [14C]glycine over 6 hr were (in pmol/mg protein): 100 for ALA, 8.2 for heme, and 2.9 for CO. Taking into account endogenous heme content, the amount of total CO production was determined to be 1.6 nmol/mg protein per 6 hr. Heme biosynthesis usually is subject to end-product negative feedback at the level of ALA synthase. However, metabolic control in these neurons is different. Both heme concentration (heme formation) and HO activity (heme degradation) were enhanced significantly during immature stage of neuronal differentiation in culture. Neuronal maturation, which is accelerated by transforming growth factor-beta 2 (TGF-beta 2), suppressed the activities of both heme biosynthesis and degradation. To explore the physiological importance of this endogenous production of CO, we examined the potency of CO as a soluble guanylyl cyclase activator. Exogenous CO (10-30 microM), comparable to endogenous CO production, significantly activated guanylyl cyclase, suggesting that HO activity may regulate cGMP levels in the nervous system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct demonstration of a physiological role for carbon monoxide in olfactory receptor neurons.

Recent evidence suggests that, like nitric oxide (NO), carbon monoxide (CO), another activator of soluble guanylyl cyclase, may serve as an intercellular messenger in the brain. Heme oxygenase, which converts heme to biliverdin and CO, is abundantly expressed in the brain and is localized to discrete neuronal populations. However, evidence for the actual generation of CO by neurons is lacking. ...

متن کامل

Comparison of Rat Primary Midbrain Neurons Cultured in DMEM/F12 and Neurobasal Mediums

Introduction: Midbrain dopaminergic neurons are involved in various brain functions, including motor behavior, reinforcement, motivation, learning, and cognition. Primary dopaminergic neurons and also several lines of these cells are extensively used in cell culture studies. Primary dopaminergic neurons prepared from rodents have been cultured in both DMEM/F12 and neurobasal mediums in several ...

متن کامل

Peroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons

Alzheimer’s disease (AD) is undoubtedly one of the serious and growing public health challenges in the world today. There is an unmet need for new and effective preventative and therapeutic treatment approaches for AD, particularly at early stages of the disease. However, the underlying mechanism against Aβ-induced electrophysiological alteration in cultured hippocampal pyramidal neurons  is st...

متن کامل

Carbon Monoxide Neurotransmission Activated by CK2 Phosphorylation of Heme Oxygenase-2

Carbon monoxide (CO) is a putative gaseous neurotransmitter that lacks vesicular storage and must be synthesized rapidly following neuronal depolarization. We show that the biosynthetic enzyme for CO, heme oxygenase-2 (HO2), is activated during neuronal stimulation by phosphorylation by CK2 (formerly casein kinase 2). Phorbol ester treatment of hippocampal cultures results in the phosphorylatio...

متن کامل

Peroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons

Alzheimer’s disease (AD) is undoubtedly one of the serious and growing public health challenges in the world today. There is an unmet need for new and effective preventative and therapeutic treatment approaches for AD, particularly at early stages of the disease. However, the underlying mechanism against Aβ-induced electrophysiological alteration in cultured hippocampal pyramidal neurons  is st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 16 18  شماره 

صفحات  -

تاریخ انتشار 1996